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Abstract

Both two-dimensional and three-dimensional low density materials are surveyed. The microstructure is usually in

a cellular form with some characteristic dimension(s) being small compared to the cell size and with the density
range approaching that at which the loss of material integrity occurs. The mechanical properties of sti�ness and
strength are considered, along with applications and future opportunities. Published by Elsevier Science Ltd.

1. Introduction

This survey is concerned with the mechanical properties for low density solid type materials. Typically
for such materials one wants to meet some requirement for a reduced level of density but also there is
needed to be some reasonable level of mechanical integrity, meaning the ability to bear load. These two
requirements often come into con¯ict, or at least involve a `trade-o�' characteristic between them. To
illustrate this, one need look no further than the classical formula for the e�ective modulus of an elastic
material containing a dilute suspension of spherical voids. This formula is

E

Em

� 1ÿ 3�1ÿ nm��9� 5nm�
2�7ÿ 5nm� c,

where Em and nm are the basic material modulus and Poisson's ratio and c<<1 is the volume fraction of
the voids. At a value of nm=1/3 the above formula is

E

Em

� 1ÿ 2c:

It is seen that the e�ective modulus, E, is degraded at a faster rate, than that at which material
volume and overall density are diminished, which go as (1ÿc ). The corresponding two dimensional case
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gives an even stronger illustration of this e�ect. Nevertheless, for a variety of applications it is still
vitally important to achieve a certain level of (low) density. The challenge then becomes one of
introducing the porosity in such a manner that the mechanical behavior is optimized for that level of
density. The microstructure of the porosity becomes the overwhelmingly determinate feature that
controls mechanical behavior. Much of the current and future research intimately relates to
understanding and controlling the morphological microstructure of the low density material in order to
achieve certain levels of performance.

The applications for low density materials are far ranging from consumer products such as food
containers, to packaging materials, to crash protection energy absorbers. The economic level of the
products spreads across the spectrum from larger volume home products to high technology forms such
as high performance honeycomb in aerospace applications and in sporting goods. There is in fact a
driving force to re-examine nearly all products at all levels asking the question if they can be made
lighter in a cost e�ective manner, and still perform the intended function.

The types of materials to be considered here are commonly called cellular materials, although the
term is not inclusive enough to encompass all low density forms. This survey of the status is limited to
the behavior of solids, not ¯uids, and it is concerned only with mechanical properties and behavior.
Lower order properties such as conductivity are much more easily treated than is the mechanical case.

There are many accessible references to the general subject. The most widely known and used
reference is that of Gibson and Ashby (1997). These authors, through the body of literature on cellular
solids which they have produced, could be called the pioneers of the modern era in this ®eld.
Historically, the interest in ultra porous materials arose through the ¯uid side in general and through
liquid induced foams in particular. Cellular forms dominated by surface tension e�ects have been of
interest and even fascination for a very long time going back to the formulation of the basic rules for
geometric stability given by Plateau (1873). The modern side has had developments progressing in
unison in both the ¯uids and the solids sides. The ¯uidic aspects of the subject include the behaviors of
liquid foams, types of emulsions, suspensions and a variety of related forms. The solid type applications
have already been mentioned. An excellent review of both the ¯uids and the solids forms entitled ``Foam
Micromechanics'' has been given by Kraynik et al. (1998). The present references should be
supplemented with those from that source. Also, Kraynik and Warren (1994) have given a review of
mechanical behavior for cellular solids.

The present review is concerned with mechanical behavior near the limit of maximum porosity,
beyond which the material loses mechanical integrity. As such, the scope is more specialized than that
for all porous materials over the full range of possible porosity. With behavior near the extreme limit of
the possible porosity, mechanics types solutions for properties often represent the leading terms in an
expansion of a type to be shown. Many areas of speci®c and self contained application will only be
brie¯y mentioned, since many of the examples warrant surveys by themselves.

The reasonable place to begin this survey is with the topic of minimal surfaces. Cellular forms admit a
geometric characterization in terms of the surface content, or surface area per unit volume. Opening the
subject in this manner will give the ®rst discriminate of di�erent cellular forms which ultimately will be
very useful.

2. Minimal surfaces

The interest in minimal surfaces has existed for a very long time and has been deeply examined,
mostly by mathematicians and physicists. The basic question is this: what is the repeating cellular form
that subdivides space into cells, with the cells having a minimal surface area. This classical topic has
been advanced into the modern developments and has become of great relevance in understanding the
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mechanical behavior of cellular forms. Examining minimal surfaces begins the connection with the e�ect
of microstructure variation and this approach invests a high degree of order and logic into the
proceedings.

Lord Kelvin (1887) proposed a minimal surface cellular form and it stood uncontested for over 100
years. The proposed Kelvin cell is that of a truncated octahedron, the tetrakeidecahedron, containing 14
faces, 8 hexagons and 6 squares. The form ®lls 3-space and repeats in a periodic manner. In a recent,
and much recognized development, Weaire and Phelan (1994) have identi®ed a form with a lower
surface content than that of the Kelvin cell. This form contains combinations of two cell types, a 14
sided form with faces of pentagons and hexagons combined with the 12 sided regular dodecahedron.
The average number of sides for the Weaire±Phelan form is 13-1/2.

A nondimensional measure is needed to compare the surface content for di�erent cell types. A
convenient measure is given by

z3D �
A

V 2=3
,

where A is the cell area and V its volume. When two or more cell types are involved, as with the
Weaire±Phelan form, the value of z is found by averaging on z 3/2 with volume weighting for the
di�erent cell types.

Table 1 gives the surface measure for di�erent cellular forms that ®ll space. All cases have cubic
symmetry, and this is the highest order symmetry that can be obtained by a space ®lling periodic
repeating cell pattern. The close proximity of the Kelvin cell and the Weaire±Phelan cell make them
ideal candidates for the study of mechanical properties. Note also that the values of z in Table 1 are for
planar faces. Allowing the faces to warp can reduce the surface area even a little further as shown by
the values for the Kelvin cell and the Weaire±Phelan cell, taken from Weaire and Phelan (1994).

Table 1

3-D surface properties. Planar faces (warped faces)

Cell Faces (Average) A
V 2=3

Tetrahedra + Octahedra 5-1/3 6.234

Cube 6 6

Rhombic Dodecahedron 12 5.345

Weaire±Phelan 13-1/2 5.310 (5.290)

Kelvin 14 5.315 (5.306)

Table 2

2-D surface properties

Cell Sides (Average) L
A2=3

Triangular 3 6
�3�1=4 � 4:56

Square 4 4

Hex+Triang 4 3(3)1/4 =3.95

Hexagonal 6 2
��
6
p
�3�1=4 � 3:72

Star (Star + Hex) 8 6
�3�1=4 � 4:56

R.M. Christensen / International Journal of Solids and Structures 37 (2000) 93±104 95



The quest for minimal surface forms can go further. Polydisperse cell forms can be constructed and
evaluated. The standard approach begins with either regular or random point placements and then
involves construction of Voroni cells, Kraynik et al. (1998). The resulting forms can be taken yet one
step further by then relaxing the geometry to obtain minimal surfaces using the surface evolver program
of Brakke (1992). It is found that some polydisperse cell forms can have even slightly lower surface
content than the forms in Table 1.

Thus far, the three dimensional case has been discussed. The corresponding two dimensional case is
equally well posed, although historically the signi®cant interest in the three dimensional case came ®rst.
Table 2 shows the two dimensional cellular forms with the surface measure (surface per unit thickness)
given by

z2D �
L

A1=2
,

where L is the cell perimeter and A its area. The cell types are shown in Fig. 1. In the cases where two
cell forms are combined, the average z is found by averaging on z 2 with area weighting. All cases in
Table 2 except the square cell have hexagonal symmetry. These hexagonal symmetry forms in Table 2
and Fig. 1 beginning with the triangular cell are the sequence of forms having hexagonal symmetry and
maintaining the basic 608, 1208 angular architecture. The hexagonal cell has the minimal surface
content, as is well understood and propagated as the ubiquitous `honeycomb'. Many other two
dimensional cellular forms could be considered, even non-periodic but repeating forms such as the
Penrose pattern, Penrose (1979). Mathematicians have classi®ed virtually all two dimensional patterns
under the heading of patterns and tillings, GruÈ nbaum and Shephard (1989).

The required local minimal characteristics in two and three dimensions are well understood. In 2-D,
three cell sides must meet at 1208 angles. In 3-D, four cell edges meet at tetrahedral angles, and three
surfaces intersect at 1208 angles to form the edges. A mathematically related minimal length (not
surface) problem has been formulated by Christensen (1996).

Fig. 1. 2-D Cell types: (a) Triang, (b) Hex and Triang, (c) Hex, (d) Star and Hex.
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These minimal surface forms are of great relevance to the mechanical performance problem because
in many cases the methods of synthesis and manufacture are controlled by phase separation processes
with surface tension being the controlling physical e�ect. Blown foams are the perfect example of this
e�ect. The fundamental question to be answered is this. How do mechanical properties relate to these
minimal surface forms, and how would the mechanical properties be e�ected by cellular forms that are
far removed from the minimal surface forms?

It is advantageous to begin the examination of mechanical behavior with the two dimensional case
because the path to understanding is less complicated in 2-D than in 3-D but still the 2-D case is of
great interest and importance.

3. 2-D mechanical behavior

It is appropriate to begin with the 2-D microstructures that are shown in Fig. 1 and Table 2. Two-
dimensional properties refer to states of plane stress or plane strain. Much of the concern here will be
with the case of 2-D isotropy since the state of isotropy is the backbone for understanding all types of
behavior. Isotropy of the mechanical properties is assured by hexagonal symmetry. Much of the work in
this area was initiated by Gibson et al. (1982). The subject is broadly covered by the recent book of
Gibson and Ashby (1997).

Table 3 is comprised of a modest compendium of elastic moduli for di�erent microstructures in the
range where the volume fraction of the voids are almost at the limit, beyond which material collapse
occurs. Properties m, K, E and u are the e�ective 2-D plane stress shear modulus, bulk modulus,
Young's modulus, and Poisson's ratio respectively. The quantity (1ÿc ) is the volume fraction of
material, which is taken to be very small compared with one, for c 4 1. The term relative density is
often used, where

r
rm

� �1ÿ c�,

with r being the density of the low density material form and rm being the density of the composing
material. The hexagonal case in Table 3 was ®rst outlined by Gibson and Ashby. The triangular and
star microstructure properties were given by Christensen (1995). A great variety of behaviors are
evidenced in Table 3. Properties proportional to (1ÿc ) are recognized to be due to the direct extension

Table 3

2-D mechanical properties

Microstructure m
Em

K
Em

E
Em

n

Triangular 1
8 �1ÿ c� 1

4 �1ÿ c� 1
3 �1ÿ c� 1

3

Hexagonal 3
8 �1ÿ c�3 1

4 �1ÿ c� 3
2 �1ÿ c�3 1

Star Shaped 3
16 �1ÿ c�3 9

16 �1ÿ c�3 9
16 �1ÿ c�3 1/2

GSCM 1
16 �1ÿ c�3 1

4 �1ÿ c� 1
4 �1ÿ c�3 1

Holes, Triang Pattern cM � p
3
��
3
p 1

12cM
�1ÿ c

cM
� 12 1

6cM
�1ÿ c

cM
� 12 2

9cM
�1ÿ c

cM
� 12 1/3

Holes, Hex Pattern cM � p
2
��
3
p 1

9cM
�1ÿ c

cM
� 32 1

12cM
�1ÿ c

cM
� 12 4

9cM
�1ÿ c

cM
� 32 1
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or contraction of the material members, while properties proportional to (1ÿc )3, at orders of magnitude
lower levels, are due to bending of the material members. The triangular, hexagonal and star
microstructure forms are probably the three classical forms delineating a variety of properties, certainly
the ®rst two are so standard as to be classical, and the third may complete the varied picture of di�erent
types of behavior. The triangular microstructure is the case of the civil engineering truss structure, well
understood and practiced for a multitude of centuries. Probably the properties forms in Table 3 for the
triangular case have been known for a very long time, but the original credit for these explicit formulas
is unknown at this time. They at least go back to early modeling e�orts with cellulose. The GSCM case
is that of the Generalized Self Consistent Method, Christensen (1993), involving the packing of circular
forms of a distribution of sizes. Some of these same cases as well as others are analyzed and discussed
by Torquato et al. (1998).

The last two entries in Table 3 relate to cases where single size circular holes are placed in the 2-D
medium. The holes are of two patterns, hexagonal packing wherein each hole has 6 nearest neighbors,
and triangular packing where there are 3 nearest neighbors. The maximum packing fraction is given by
cM and the results shown from Day et al. (1992) are as c 4 cM. Again a variety of behaviors are seen.

Considering the microstructures in Fig. 1, that of Fig. 1(b) the hex plus triang cell case, has properties
the same as those of the triangular case in Table 3. The other three cases in Fig. 1 correspond to the
®rst three entries in Table 3. A varied geometrical feature is involved in the star case of Fig. 1(d)
compared with the other cases. From the interior of the hexagonal cells the geometry is seen to be
concave, but for the star cell portion, some parts have outwardly convex regions. Such features are
referred to as re-entrant angles. It is often said that cell geometries with re-entrant angles give rise to
negative Poisson's ratios. However, the star cell case of Table 3 proves that this characteristic is not
necessarily so. Actually it is in case of quite extreme anisotropy where such features as negative
Poisson's ratios usually arise, as is discussed next.

There is an unlimited number of material arrangements that give isotropic behavior. When one
broadens beyond that to consider anisotropy the possibilities become even broader in some sense. The
consideration of anisotropic forms is now beginning to be considered in a manner that leads to
applications. This is well illustrated by the work of Overacker et al. (1998). These authors have
examined highly anisotropic 6 sided cellular forms involving re-entrant angles. They show that the
negative Poisson's ratio e�ect itself is highly anisotropic, with negative values only occurring with
respect to certain directions of loading relative to the microstructure. They discuss applications of such
forms using the `anchoring' e�ect related to negative Poisson's ratios. Further aspects of low density
materials with negative Poisson's ratios will be given in the section on three dimensional microstructures
and behaviors.

Consideration of strength is equally important as that of the sti�ness and compliance properties. In
the very low density region, the buckling of the micro-material members is the dominant mechanism.
This occurs not only in a state of compression, but can occur in tension also. In this latter case the
Poisson's ratio e�ect can induce buckling in members with an orientation transverse to the direction of
loading. With regard to periodic microstructures, the strength properties can be highly anisotropic, even
when the symmetry assures isotropy of the elastic moduli. Failure criteria in full, general tensorial form
for these materials is not available, and remains to be developed. Speci®c discussions of failure
mechanisms and behavior are given by Gibson and Ashby (1997).

The physical reality of most cellular forms is that they seldom conform to the idealized
microstructure, due to manufacturing methods and tolerances and due to general aspects of usage. The
degrading in¯uences include imperfect connectedness and non-aligned micro-member geometry.
Grenestedt (1998) has performed a study of the e�ect of the `waviness'. It was shown that such
imperfections, within the realistic range, have a strongly degrading e�ect upon properties. The
implications of this are equally important to the three dimensional case.
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A considerable degree of predictive order can be discerned in the microstructure types that have been
studied and evaluated. The most important discrimination is that of the direct mechanism versus the
bending mechanism of the internal loading of the material members. The minimal surface form,
hexagonal, has a hybrid behavior with the 2-D bulk modulus controlled by the direct mechanism but
the shear modulus controlled by the bending mechanism, see Table 3. The triangular cell form is totally
controlled by the direct mechanism and the star cell form is totally controlled by the bending
mechanism. Some simple rules of physical behavior are in evidence in these cases. The direct mechanism
results when 6 material members meet at a node. The hybrid case occurs with 3 material members
meeting at a node and ®nally the bending case occurs when a signi®cant portion of the nodes have only
two material members meeting, which is an idealization of a curved member. The microstructure of the
hybrid case is the minimal surface form while the other two cases have microstructures far removed
from the minimal surface form. All three cases have distinct and bene®cial applications, as will be seen
in the next section.

4. 2-D patterns with 3-D behavior

Most two dimensional forms when brought to the points of application become three dimensional
cases. For example, the 2-D examples in Table 3 when viewed as 3-D continua are actually transversely
isotropic materials. The properties in Table 3 are the in-plane properties which normally would be
converted from plane stress to plane strain forms and must be supplemented by 3 more out of plane
properties to give a complete characterization. Take axis 1 to be the symmetry axis. Then in the low
density range, the ®rst four microstructures in Table 3 all have the same out of plane properties given
by

m12
mm

� 1

2
�1ÿ c�,

E11

Em

� �1ÿ c�

and

n12 � nm:

The most important example of this class of materials is that of the honeycomb core for sandwich
materials. As shown by Allen (1969), Noor et al. (1996) and Vinson (1999) the core in sandwich
construction can be the limiting factor for this type of design. There are many other examples also, such
as catalyst support in chemical exchange processes, crash protection materials, space ®lling forms, etc.

The in-plane strength and failure mechanisms of honeycomb materials have been extensively studied
by Papka and Kyriakides (1998a, 1998b, 1998c). In general, instabilities develop locally and spread with
increased loading. The stress strain curve typically exhibits a plateau region. These same authors also
have studied cellular forms involving single size circular rings or cylinders packed in a hexagonal
manner. The same general features of behavior evolve in this case. The out of plane compression of
these types of materials generally involves a type of buckling followed by plastic deformation. Large
amounts of energy can be absorbed during crushing, making such forms ideal for crash protection. This
important topic is su�ciently self contained as to warrant separate treatment, Santosa and Wierzbicki
(1998).

Returning to sandwich forms, there is an opportunity to develop di�erent core material forms for
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various types of applications. For example, honeycomb does not easily conform to curved shapes, other
types of cores are more suitable for this application.

5. 3-D mechanical behavior

The full blown case of low density materials in 3-D forms and applications is a rich, active and
diverse ®eld. In contrast to the 2-D case, a major new distinction arises in the 3-D case. This is the
circumstance of the open cell form versus the closed cell form. Both cases are of great importance and
must be treated separately. At ®rst consideration it can be said that the open cell form favors strength,
and the closed cell form favors sti�ness, as idealizations, but the problem is much more subtle than that.
Much depends on the technique and quality of manufacture, and often other design requirements take
precedence, such as using closed cell forms to prevent moisture penetration.

First, consider the open cell case. The logical cell type to consider would be that of the Kelvin cell,
the truncated octahedron. This has been done by Warren and Kraynik (1997) and by Zhu et al. (1997a).
Several new ingredients arise in the 3-D case that don't exist in the 2-D case. First, for those materials
that are synthesized by a phase separation process, there is a process sequence of forming the minimal
surface cell followed by evacuation of the material from the faces into an aggregation along the cell
edges, leaving the open cell form. The consequence of this process is that the cross section of the
material members is formed by the intersection of three Plateau borders, Kraynik et al. (1998), involving
convex circular arcs or some approximation thereof. Another complication is that the micro-material
members can not only undergo bending as in the 2-D case, but can undergo torsion as well. It can be
shown that the torsion e�ects are of the same order as the bending e�ects and cannot be neglected.

Despite these complications, remarkable new results have been obtained in the references cited above.
The Kelvin cell aggregation has cubic symmetry, with 3 independent elastic properties. Warren and
Kraynik (1997) and Zhu et al. (1997a) show that the properties are almost isotropic, to within a few
percent. In one of the most important results of recent times, Warren and Kraynik (1997) reveal the
special case in which the cubic properties form reduces exactly and identically to the case of isotropy.
This case is that which occurs when the material members have a circular cross section and when the
material Poisson's ratio is nm=0. In this case, their results give the isotropic bulk modulus and shear
modulus as

k

Em

� 1

9
�1ÿ c�

and

m
Em

� 4
���
2
p

9p
�1ÿ c�2 � 0:200070�1ÿ c�2 � 1

5
�1ÿ c�2:

The fact that this case involves circular cross section members, rather than those with Plateau borders
does not detract from its signi®cance. The circular case can be taken as the base line behavior. The
shear properties for the Plateau borders case are considerably larger than the above value due to the
increased bending and torsional rigidity. Kraynik et al. (1998) discusses results for other cell types, such
as the Weaire±Phelan cell and poly-disperse forms.

It is seen that the properties just stated involve the bulk modulus dominated by the direct mechanism
of deformation while the shear modulus is given by the bending (and torsion) mechanism. This situation
is akin to that which occurred in the 2-D case, both cases with cell forms simulating the minimal surface
cell.
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As with the 2-D case, there is a behavior that involves only the direct mechanism. This isotropic
result was ®rst given by Gent and Thomas (1959), as deduced generally, not from any particular cell
type. The bulk modulus is the same as given above, but the shear modulus and Young's modulus are
given by

m
Em

� 1

15
�1ÿ c�

and

E

Em

� 1

6
�1ÿ c�:

It should also be noted that Ko (1965) was one of the very early contributors to the ®eld with studies
of several cell types. Gibson and Ashby (1982) analyze and discuss 3-D material behavior in terms of all
properties involving the bending mechanism.

Now consider closed cell forms. In recent work Christensen (1998) has used the Generalized Self
Consistent Method to obtain the following predictions for the isotropic bulk and shear moduli

k

Em

� 2

9�1ÿ nm� �1ÿ c�

and

m
mm

� 1

3
�1ÿ c�:

Kraynik et al. (1998) have used and discussed ®nite element models to obtain numerical results for the
case of nm=0.49. These results for the Kelvin cell and the Weaire±Phelan cell are nearly isotropic and in
quite close agreement with the above analytical solution results. The shear moduli involve a direct
resistance mechanism as shown by the (1ÿc ) dependence in contrast to the open cell case. It is quite
interesting to note that the above analytical solution predicts the value for m/mm to be independent of
Poisson's ratio nm. This unexpected result could be checked against numerical solutions. It is seen that
the closed cell form, from the point of view of e�ective moduli, provides a much more e�cient material
utilization than does the open cell form.

The large deformation properties of low density materials presents a challenge. Budiansky and
Kimmel (1987) considered forms appropriate for the behavior of lung tissue. Zhu et al. (1997b) have
studied open cell forms using the Kelvin cell and performing elastic type analyses with local material
buckling at large compressive strains. They ®nd a strong dependence of the nonlinear stress strain curve
upon the direction of deformation. Even though the form is nearly isotropic in the small strain range,
there is no reason to expect any form of isotropy in the large deformation range. Although typical stress
strain curves often show a plateau type behavior at su�ciently large strains, Kraynik et al. (1998), Zhu
et al. (1997b) ®nd some cases in which no plateau region exists. Strength considerations are not
extensively treated for these materials, and this represents a major opportunity area. Compressive
strength is the limiting condition due to buckling of the micro-material members, Gibson and Ashby
(1997). At the same volume fraction, the characteristic material thickness will be much less in the closed
cell form than in the open cell form, and this favors the open cell form for strength. General
considerations on the e�ect of imperfections, Grenestedt (1998), are probably even more important in
the three dimensional case than in 2-D.

Low density material forms, both closed cell and open cell, are made with the full spectrum of
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material types, metals, polymers and ceramics. Polymers have been the traditional materials for these
forms, but the other materials are also rapidly progressing. A survey of opportunities with cellular
metallic forms is given by Evans et al. (1998a). Related studies are by Evans et al. (1998b) and
Sugimura et al. (1998). Nieh et al. (1998) have given detailed morphology characterizations using
synchrotron X-ray tomography for aluminum open cell forms and shown the mechanical behavior to be
in accordance with the theoretical forms in the literature, and surveyed here. General aspects of the
subject have been discussed by Koch et al. (1994). It is likely that a very wide variety of forms and
applications will emerge using all material types in cellular form.

As mentioned in connection with two dimensional behavior, negative Poisson's ratio e�ects can be
induced by controlling the material microstructure. Choi and Lakes (1992, 1995) have shown how re-
entrant angle forms can produce these e�ects and how the e�ect can be employed. This is in fact a good
example of how cellular materials can be `designed' to produce certain desired e�ects. Sigmund (1995)
has developed a methodology for designing materials in this sense. Other general aspects of cellular,
porous materials are given by Fleck and Cocks (1997) and an earlier text by Hilyard (1982).

Up until this point, all low density material types have been based upon speci®c cellular forms. This
characteristic is not requisite, low density forms can exist with no discernible cellular morphology.
Aerogel materials are the perfect examples of such forms. These materials exist in the ultra low density
range and morphological characteristics are best described on a scale not too much larger than that of
angstroms, with forms sometimes called a `string of pearls' type network. Mechanical characterization of
these materials have been given by Scherer et al. (1995a, 1995b), as well as Pirard and Pirard (1997). A
particular case of the quadratic dependence of modulus upon (1ÿc ) is given by Bellet et al. (1996). A
general mechanical summary was that of LeMay et al. (1990), and recent considerations of applications
by Hrubesh (1998).

With regard to sandwich type applications for closed cell forms in the cores, Hutchinson and He
(1998) have given the relevant structural analysis, while Budiansky (1999) considers minimum weight
design for structures, which certainly favors sandwich construction. Conference proceedings on sandwich
construction are given as Fourth International Conference on Sandwich Construction (1998). A trade
magazine with current trends is that of the Professional Boatbuilder, 1998.

Any summary of low density material, cellular forms would not be complete without mentioning the
mechanics of bio-materials in general and of bone in particular. However, that topic is too extensive and
too important to merely be mentioned here in summary reference. Entry to this ®eld can be gained from
Kinney and Ladd (1998), Yang et al. (1998) and Ladd and Kinney (1997).

6. Future directions

There are many opportunities for new applications of light weight materials, and ultra light weight
structural forms. Such materials will be tailored to speci®c applications. Understanding and controlling
the degree of anisotropy in both 2-D and 3-D applications will need to receive much attention. In a
more general sense, controlling the microstructure to obtain desired properties will be of great
importance. This ties in with the methods of material synthesis and production. Understanding and
controlling non-ideal morphological geometry and imperfections will need to receive much more
attention, particularly for materials in the very low density range. Ultimately it will probably be possible
to design materials or at least design material microstructures for each and every application. The
economics of production and life cycle cost will be one of the ®rst order requirements.

In terms of speci®c mechanics of materials directions, understanding the direct mechanism versus the
bending (and torsion) mechanism will be of importance for 3-D open cell forms. Until the 3-D case is
understood with the same degree of rigor that exists in the 2-D case there will be missing information.
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For example, what explicit 3-D microstructure(s) will give the direct mechanism for all properties.
Perhaps the ®rst entry in Table 1 is the guiding form for the direct mechanism. It would involve the
intersection of 12 material members at each joint. Such a microstructure would be far removed from the
minimal surface cell form. Explicit 3-D microstructures for all properties being controlled by the
bending and torsion mechanism are equally obscure at this point. Strength characterizations will be
necessary for design applications. Tensorial forms for strength criteria will be needed to account for
multi-component stress states.

Sandwich forms will be of growing importance and dominance. Such forms are already an integral
part of the aerospace industry. As costs are driven down, sandwich forms based upon cellular cores
(both 2-D patterns and 3-D forms) will come into widespread usage in marine/naval applications and
ultimately in automobiles and trucks. The core is often the limiting factor in sandwich structures, and it
merits a full scale attack on all related problems.
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